Security in IPv6
Security in IPv6

- Basic Security Requirements and Techniques
 - Confidentiality
 - The property that stored or transmitted information cannot be read or altered by an unauthorized party
 - Integrity
 - The property that any alteration of transmitted or stored information can be detected
Security in IPv6

- Current Solutions
 - Internet adoption grew
 - Applications were designed and operated “ad hoc” security solutions
 - Provides semi-trusted and semi-secure Internet access
 - Don’t address fundamental issues
 - Mostly concerned with fighting symptoms
Security in IPv6

- Current Solutions
 - Packet Filters and Firewalls
 - Filters traffic based on predefined rules
 - IP address
 - port numbers
 - virus patterns
 - May determine “unusual” behavior
Security in IPv6 - example
Security in IPv6

- The IPSEC framework
 - A formally defined standard (RFC 2401)
 - Contains 6 distinct elements
 - Description of security requirements and mechanisms on the network layer
 - Security element for encryption (RFC 2406)
 - Security element for authentication (RFC 2402)
 - Concrete cryptographic algorithms for encryption and authentication
 - Definition of Security policy and Security associations between partners
 - IPSEC key management
 - ISAKMP - RFC 2408 - Internet Security Association and Key Management Protocol
Security in IPv6

The IPSEC framework

Security in IPv6

- Authentication in IPv6
 - Extension Header type 51 provides integrity and authentication for end-to-end data

<table>
<thead>
<tr>
<th>1 1 1 1 1 1 1</th>
<th>1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Header</th>
<th>Length</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Parameter Index (SPI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication Data - variable length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Security in IPv6

- Authentication in IPv6
 - Next Header
 - Length of Payload in x32 bits
 - Reserved
 - SPI - Indicates which checksum algorithm has been used
 - Sequence Number - Prevents replay attacks
 - Not to exceed 232 to prevent replay.
 - Re-negotiation should occur
 - It is known that packets may arrive out of order
 - Authentication Data - variable length
 - A cryptographically secure checksum over the payload and possibly other fields
Security in IPv6

- Authentication in IPv6
 - Cryptographical checksum is also known as a message digest or hash. Uses rules
 - IP Header, version, class, and flow label are excluded from the computation. Hop Limit is assumed to contain zero
 - All Extension Headers that change en-route are computed as a sequence of zero
 - If Routing Extension Header is present the IPv6 destination address is set to the final destination
 - IPv6 implementations MUST support
 - Keyed message digest No. 5 (MD5)
 - requires “key”
 - considered theoretically breakable
 - Secure Hash Algorithm No. 1 (SHA-1)
Security in IPv6

Authentication in IPv6

Payload Authentication

- Transport mode authenticates all end to end payload plus selected headers (described previously)
 - Payload Length
 - Next Header
 - Extension headers (not listed previously)
 - Upper layer headers and data
 - Some IP header fields are not protected
 - Will not work with NAT environment
Security in IPv6

- Authentication in IPv6
 - Header and Payload Authentication
 - Accomplished by creating a tunnel between 2 gateways
 - Gateway may be a router
 - May be a VPN implementation
 - Wraps the original packet in a new packet
 - Applies checksum to entire packet
Security in IPv6

- Encryption in IPv6
 - Extension Header type 50 provides integrity and confidentiality

```
+------------------+
<p>| 1 1 1 1 1 1 1 1 |
| 1 1 1 1 1 1 1 1  |
| 1 1 1 1 1 1 1 1  |
| 1 1 1 1 1 1 1 1  |
| 1 1 1 1 1 1 1 1  |
| 1 1 1 1 1 1 1 1  |
| 2 2 2 2 2 2 2 2  |
| 2 2 2 2 2 2 2 2  |
| 2 2 2 2 2 2 2 2  |
| 2 2 2 2 2 2 2 2  |</p>
<table>
<thead>
<tr>
<th>3 3 3 3 3 3 3 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>8 9 0 1 2 3 4 5</td>
</tr>
<tr>
<td>6 7 8 9 0 1 2 3</td>
</tr>
<tr>
<td>4 5 6 7 8 9 0 1</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Security Parameter Index (SPI)</td>
</tr>
<tr>
<td>Sequence Number</td>
</tr>
<tr>
<td>Encryption Parameters - variable length</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>ENCRYPTED Data</td>
</tr>
<tr>
<td>Trailer Parameters - variable length</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
```
Security in IPv6

- Encryption in IPv6
 - SPI - Indicates which encryption algorithm has been used
 - Sequence Number - Prevents replay attacks
 - Not to exceed 232 to prevent replay.
 - Re-negotiation should occur
 - It is known that packets may arrive out of order
 - Encryption Parameters - variable length
 - Depends on the encryption algorithm used
 - Encrypted Data
Security in IPv6

- Encryption in IPv6
 - Trailer
 - Contains Optional authentication information to protect the encrypted data and the sequence number
 - Padding (for 64 bit alignment)
 - Next Header value (in the encrypted packet)
 - IPv6 specification contains one encryption algorithm that must be supported by every implementation
 - DES-CBC (Data Encryption Standard in Cipher Block Chaining Mode)
 - Other stronger algorithms may be negotiated using corresponding SA and SPI
 - Government export controls
Security in IPv6

- Encryption in IPv6
 - Payload encryption
 - Transport mode encrypts all end to end extension headers and payload
 - Extension headers must not be looked at in path
Security in IPv6

- Encryption in IPv6
 - Header and Payload encryption
 - Accomplished by creating a tunnel between 2 gateways
 - Gateway may be a router
 - May be a VPN implementation
 - Wraps the original packet in a new packet
 - Applies checksum to entire packet
Security in IPv6

- Encryption in IPv6
 - Combining Authentication and Encryption
 - It was originally intended to use both
 - But increased IPv6 packet size was not good
 - Decided to included AH functionality in ESP
Security in IPv6

- IPSEC may solve many issues on the Internet
 - FTP, Telnet, DNS, and SNMP
- However other issues exist
 - IPSEC tunnels break through firewalls or NAT
 - Tunneled IPSEC traffic may contain malicious data
 - QOS doesn’t work in IPSEC
- Mobility issues
 - Dynamic IP addresses cause IPSEC to fail
Security in IPv6

- IPv6 deployment slowed due to IPv4 workarounds
 - NAT and CIDR
 - SSL
 - SSH
 - S/MIME, PGP

- IPSEC deployment issues
 - lack of public key infrastructure
 - lack of vendor/IPv6 adoption
Questions?