IPv6 Functionality

Jeff Doyle
IPv6 Solutions Manager
jeff@juniper.net
Agenda

- ICMPv6
- Neighbor discovery
- Autoconfiguration
Agenda

- ICMPv6
- Neighbor discovery
- Autoconfiguration
ICMPv6

- Many of the same functions as ICMPv4
 - ICMPv4 Protocol Number = 1
 - ICMPv6 Next Header Number = 58
- Adds new messages and functions
 - Neighbor discovery
 - Stateless autoconfiguration
 - Mobile IPv6
ICMPv6 Message Types

- Defined in RFC 2463

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Destination Unreachable</td>
</tr>
<tr>
<td>2</td>
<td>Packet Too Big</td>
</tr>
<tr>
<td>3</td>
<td>Time Exceeded</td>
</tr>
<tr>
<td>4</td>
<td>Parameter Problem</td>
</tr>
<tr>
<td>128</td>
<td>Echo Request</td>
</tr>
<tr>
<td>129</td>
<td>Echo Reply</td>
</tr>
</tbody>
</table>
ICMPv6 New Message Types

- Defined in RFC 2461
- Used for Neighbor Discovery protocol

<table>
<thead>
<tr>
<th>Type</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>Router Solicitation (RA)</td>
</tr>
<tr>
<td>134</td>
<td>Router Advertisement (RA)</td>
</tr>
<tr>
<td>135</td>
<td>Neighbor Solicitation (NS)</td>
</tr>
<tr>
<td>136</td>
<td>Neighbor Advertisement (NA)</td>
</tr>
<tr>
<td>137</td>
<td>Redirect</td>
</tr>
</tbody>
</table>
Agenda

- ICMPv6
- Neighbor discovery
- Autoconfiguration
IPv6 Neighbor Discovery

- RFC 2461
- Neighbor can be router or host
- Performs several functions
 - Link-layer address resolution
 - Router discovery
 - Local prefix discovery
 - Address autoconfiguration
 - Parameter discovery
 - Next-hop determination
 - Tracks neighbor and router reachability
 - Duplicate address detection
 - Redirects
Comparison to IPv4 Functions

◆ Similar IPv4 functions
 ✤ ARP
 ✤ ICMP Router Discovery
 ✤ ICMP Redirect

◆ IPv4 has no agreed-upon mechanism for neighbor unreachability detection
 ✤ Detects failing routers and links
 ✤ Detects nodes that change their link-layer address
 ✤ Unlike ARP, detects half-link failures
Improvements Over IPv4

- Router discovery part of base protocol
 - Hosts do not need to “snoop” routing protocols
- RAs and redirects carry link-layer addresses
 - No additional packet exchange needed
- RAs carry link prefixes
 - No separate mechanism to configure “netmasks”
 - Enables address autoconfiguration
 - Multiple prefixes can be associated with same link
- RAs can advertise link MTUs
 - Ensures all nodes on link use same MTU value
- Immune to reception of off-link ND messages
 - Hop limit always set to 255
 - IPv4 ICMP Redirects and Router Discovery messages can be sent from off-link
Router Discovery

- Router Advertisements sent periodically
 - Interval randomized to prevent synchronization
 - Configurable range defined by:
 - MaxRtrAdvInterval (default 600 seconds)
 - MinRtrAdvInterval (default 200 seconds)
 - RAs sent to All-Nodes multicast address (ff01::1)
- RAs sent in response to Router Solicitations
 - RS sent to All-Routers multicast address (ff01::2)
 - RA unicast to soliciting node
Router Advertisement Information

◆ Current hop limit
 ◆ Value to be used by outgoing IP packets
◆ Address configuration flags
 ◆ “M” and “O” bits
◆ Router lifetime
 ◆ Lifetime for default router
◆ Reachable time/ Retrans timer
 ◆ Used for router unreachability detection
◆ Source link-layer address (optional)
 ◆ Can be omitted for in-bound load balancing
◆ MTU (optional)
 ◆ If AdvLinkMTU is configured
◆ Prefix information (optional)
 ◆ Used for address autoconfiguration
Unsolicited Router Advertisement

Default GW-List
A
B
C

http://www.juniper.net
Copyright © 2003 Juniper Networks, Inc.
Choosing a Default Gateway

- Implementations may randomly select a default router
- Implementations may cycle through default list round-robin
- What happens when default router is the wrong router?
Redirect

Default GW-List
A
B
C

Sent data to Host 3 using Default GW "A"

Redirect traffic via Router B

ICMP Redirect to Router B

Path used with Default Gateway "A"

Host 3
Neighbor Cache

C:\Documents and Settings\Jeff Doyle>ipv6 nc
5: fe80::202:2dff:fe25:5e4c 00-02-2d-25-5e-4c permanent
4: fe80::260:83ff:fe7b:2df3 00-60-83-7b-2d-f3 stale (router)
4: fe80::210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
4: 3ffe:3700:1100:1:210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
4: 3ffe:3700:1100:1:d9e6:b9d:14c6:45ee 00-10-a4-a0-bc-97 permanent
4: 2001:468:1100:1:210:a4ff:fea0:bc97 00-10-a4-a0-bc-97 permanent
4: 2001:468:1100:1:d9e6:b9d:14c6:45ee 00-10-a4-a0-bc-97 permanent
3: 2002:c058:6301::c058:6301 192.88.99.1 permanent
3: 2002:836b:213c::836b:213c 131.107.33.60 permanent
3: 2002:4172:a85b::4172:a85b 127.0.0.1 permanent
3: 2002:836b:213c:1:e0:8f08:f020:6 131.107.33.60 permanent
3: 2001:708:0:1::624 incomplete
2: ::65.114.168.91 127.0.0.1 permanent
2: fe80::5efe:65.114.168.91 127.0.0.1 permanent
2: fe80::5efe:169.254.113.126 127.0.0.1 permanent
1: fe80::1 permanent
1: ::1 permanent
Neighbor Address Resolution

- Equivalent function to IPv4 ARP
 - But multicast instead of broadcast
- Check Neighbor Cache for address
- If no address, create an Incomplete entry for target address
- Send Neighbor Solicitation to Solicited-Node Multicast address
- Target node sends Neighbor Advertisement with link-layer address
- Soliciting node changes Incomplete entry to Reachable
Solicited–Node Multicast Address

- All multicast-capable interfaces required to listen
- Formed by appending low-order 24 bits of target IPv6 address to prefix ff02:0:0:0:0:1:ff00::/104
- Addresses differing only in high-order bits will map to same solicited-node multicast
 - Useful when multiple addresses assigned to interface
 - Reduces number of multicast addresses a node must listen for

Example:

Interface Address #1 = 3ffe:3700:1100:1:200:bff:fec6:45ee

Solicited-Node Multicast Address = ff02::1:ffc6:45ee
Next-Hop Discovery

- Check Neighbor Cache for existing next-hop entry for particular destination
- Check whether destination is on- or off- link
 - On-link: Sent directly to destination
 - Off-link: Sent to default router
- Identify link-layer address of next-hop
Neighbor Unreachability Detection

- Neighbor cache stores information about neighbors
 - IP address
 - Link-layer address
 - Reachability state

- Neighbor reachability states
 - INCOMPLETE
 - REACHABLE
 - STALE
 - DELAY
 - PROBE
Agenda

- ICMPv6
- Neighbor discovery
- Autoconfiguration
Address Autoconfiguration

- **Stateless autoconfiguration**
 - Requires only a router
 - Key advantage for applications such as Mobile IP

- **Stateful autoconfiguration**
 - When more control is desired
 - DHCPv6

- **Stateless and stateful can be combined**
 - “M” and “O” flags in RA
 - M flag: Stateless Address Autoconfiguration Y/N
 - O flag: Stateless Autoconfigure Other Parameters Y/N
Stateless Autoconfiguration

- Interface ID automatically derived
 - IEEE addresses use MAC-to-EUI-64 conversion
 - Other addresses use other means, such as random number generation
- Host creates a link-local address
- Host performs duplicate address check
- Host sends RS to the all-routers multicast address \((ff01::2)\)
- Router unicasts RA with prefix information
- Host adds prefix to Interface ID to form global unicast address
MAC-to-EUI-64 Conversion

1. First three octets of MAC becomes Company-ID
2. Last three octets of MAC becomes Node-ID
3. **0xffff** inserted between Company-ID and Node-ID
4. Universal/Local-Bit (U/L-bit) is set to 1 for global scope
MAC-to-EUI-64 Conversion Example

MAC Address: 0000:0b0a:2d51

In binary:

00000000 00000000 00001011 00001010 00101101 01010001

U/L Bit

Company-ID

Individual Node-ID

Insert fffe between Company-ID and Node-ID

00000000 00000000 00001011 11111111 11111110 00001010 00101101 01010001

Set U/L bit to 1

00000010 00000000 00001011 11111111 11111110 00001010 00101101 01010001

Resulting EUI-64 Address: 0200:0bff:fe0a:2d51
Using the EUI-64 Interface ID

EUI-64 Address: 200:bff:fe0a:2d51

Link-Local Address: fe80::200:bff:fe0a:2d51

Global Unicast Address: 3ffe:3700:1100:1:200:bff:fe0a:2d51
Solicited-Node Multicast Revisited

Interface Address #1 = 3ffe:3700:1100:1:200:bff:fec6:45ee

Solicited-Node Multicast Address = ff02::1:ffc6:45ee

◆ Last 24 bits are not changed by autoconfiguration or by solicited node multicast
Address Autoconfiguration: A Security Problem?

- Interface ID remains constant for a host
 - Even when prefix information changes
 - Unlike IPv4, where entire address changes
- Mobile users can be tracked
- Usage from always-on addresses can be tracked
- This is a concern for some, not for others
- Two solutions:
 - Always use stateful autoconfiguration (DHCPv6)
 - Use privacy addresses for outgoing connections
Privacy Addresses

- RFC 3041
- A new Interface ID is randomly generated
 - Whenever a new public address is autoconfigured
 - Periodically (period is configurable)
- Both autoconfigured public and private addresses are used
 - Public for incoming connections (DNS registered)
 - Private for outgoing connections
Stateful Autoconfiguration: DHCPv6

- Currently in Internet-draft
- Many changes from DHCPv4:
 - Configuration of dynamic updates to DNS
 - Address deprecation for dynamic renumbering
 - Authentication
 - Clients can ask for multiple IP addresses
 - Addresses can be reclaimed
 - Integration between stateful and stateless autoconfiguration
- Uses multicasting
 - All_DHCP_Agents: ff02::1:2
 - All_DHCP_Servers: ff05::1:3
Duplicate Address Detection

- Must be performed by all nodes
- Performed with both stateless and stateful autoconfiguration
- Performed before assigning a unicast address to an interface
- Performed on interface initialization
- Not performed for anycast addresses
- Link must be multicast capable
- New address is called "tentative" as long as duplicate address detection takes place
Duplicate Address Detection

1. Interface joins all-nodes multicast group
2. Interface joins solicited-node multicast group
3. Node sends one NS with
 - Target address = tentative IP address
 - Source address = unspecified (::)
 - Destination address = tentative solicited-node address
Duplicate Address Detection

- If address already exists, the particular node sends a NA with
 - Target address = tentative IP address
 - Destination address = tentative solicited-node address

- If soliciting node receives NA with target address set to the tentative IP address, the address must be duplicate
Configuration Example:
Router Discovery

[edit]
lab@Juniper5# show interfaces fe-2/1/0
unit 0 {
family inet6 {
 address 2001:468:1100:1::1/64;
 address 3ffe:3700:1100:1::1/64;
}
}

[edit]
lab@Juniper5# show protocols router-advertisement
interface fe-2/1/0.0 {
 other-stateful-configuration;
 prefix 3ffe:3700:1100:1::/64;
 prefix 2001:468:1100:1::/64;
}
Configuration Example: Windows XP Host

C:\Documents and Settings\Jeff Doyle>ipv6 if 4
Interface 4: Ethernet: Local Area Connection 2
 uses Neighbor Discovery
 uses Router Discovery
 link-layer address: 00-10-a4-a0-bc-97
 preferred global 2001:468:1100:1:d9e6:b9d:14c6:45ee, life 6d21h14m26s/21h12m4s (anonymous)
 preferred global 2001:468:1100:1:210:a4ff:fea0:bc97, life 29d23h59m25s/6d23h59m25s (public)
 preferred global 3ffe:3700:1100:1:d9e6:b9d:14c6:45ee, life 6d21h14m26s/21h12m4s (anonymous)
 preferred global 3ffe:3700:1100:1:210:a4ff:fea0:bc97, life 29d23h59m25s/6d23h59m25s (public)
 preferred link-local fe80::210:a4ff:fea0:bc97, life infinite
 multicast interface-local ff01::1, 1 refs, not reportable
 multicast link-local ff02::1, 1 refs, not reportable
 multicast link-local ff02::1:ffa0:bc97, 3 refs, last reporter
 multicast link-local ff02::1:ffc6:45ee, 2 refs, last reporter
 link MTU 1500 (true link MTU 1500)
 current hop limit 64
 reachable time 22000ms (base 30000ms)
 retransmission interval 1000ms
 DAD transmits 1